Channel | Publish Date | Thumbnail & View Count | Actions |
---|---|---|---|
| 2023-06-05 09:33:18 | ![]() 5,858 Views |
*References*
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Gaussian distribution explained: https://youtu.be/UVvuwv-ne1I
Binary cross entropy prior for Bernoulli distribution: https://towardsdatascience.com/where-did-the-binary-cross-entropy-loss-function-come-from-ac3de349a715
Demonstration that the binary cross entropy loss for classification is convex: https://towardsdatascience.com/why-not-mse-as-a-loss-function-for-logistic-regression-589816b5e03c
*Related Videos*
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Why neural networks are universal functions approximators: https://youtu.be/O45AaRPQhuI
Why we need activations in neural nets: https://youtu.be/rj6K46u0J5w
Bias variance Trade-off: https://youtu.be/5mbX6ITznHk
Neural networks on tabular data: https://youtu.be/e62CBva4TYc
Why we divide by N-1 in the sample variance: https://youtu.be/E3_408q1mjo
*Contents*
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
00:00 – Intro – MSE for classification
01:12 – Reason 1 – MSE assumes a gaussian prior
04:15 – Reason 2 – MSE non-convexity
08:03 – Reason 3 – MSE weak penalisation
08:42 – Outro
*Follow Me*
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Twitter: @datamlistic https://twitter.com/datamlistic
Instagram: @datamlistic https://www.instagram.com/datamlistic
TikTok: @datamlistic https://www.tiktok.com/@datamlistic
*Channel Support*
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
The best way to support the channel is to share the content. 😉
If you’d like to also support the channel financially, donating the price of a coffee is always warmly welcomed! (completely optional and voluntary)
► Patreon: https://www.patreon.com/datamlistic
► Bitcoin (BTC): 3C6Pkzyb5CjAUYrJxmpCaaNPVRgRVxxyTq
► Ethereum (ETH): 0x9Ac4eB94386C3e02b96599C05B7a8C71773c9281
► Cardano (ADA): addr1v95rfxlslfzkvd8sr3exkh7st4qmgj4ywf5zcaxgqgdyunsj5juw5
► Tether (USDT): 0xeC261d9b2EE4B6997a6a424067af165BAA4afE1a
#mse #bce #classification #stats
Please take the opportunity to connect and share this video with your friends and family if you find it useful.